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b Communicating Sequential Processes (CSP) is a paradigm for communication

and synchronization among distributed processes. The alternative construct is a

0key feature of CSP that allows nondeterministic selection of one among several
possible communicants, A generalized version of Hoare's original alternative
construct that allows output commands to be included in guards has been
proposed. Previous algorithms for this construct assume a message passing

0architecture and are not appropriate for multiprocessor systems that feature
shared memory. This naper describes a distributed algorithm for the generalized
alternative construct that exploits the capabilities of a parallel computer with
shared memory. A correctness proof of the proposed algorithm is presented to
show that the algorithm conforms to some satefy and liveness criteria. Exten-
sions to allow termination of processes and to ensure fairness in guard selection
are also given.

KEY WORDS: Communicating sequential processes; alternative operation;
shared memory multiprocessor; parallel processing.

1. INTRODUCTION

Communicating Sequential Processes (CSP) is a well known paradigm for
communication and synchronization of a parallel computation.(' 2 A CSP
program consists of a collection of processes PI, P2,.... PN that interact by
exchanging messages. These message passing primitives, called input and
output commands, are synchronous-a process attempting to output

4This work was supported by ONR Contract Number N00014-87-K-0184.
2 Department of Compater Science, University of Utah, Salt Lake City, Utah 84112.

215

0885-7458/87/0600-0215$05.000 f 1987 Plenum Publishing Corporation

89 12 050



216 Fujimoto and Feng

(input) a message to (from) another process must wait until the second
process has executed the corresponding input (output) primitive.

An important feature of CSP is the alternative construct which is
based on Dijkstra's guarded command. 3 ' This construct enables a process
of nondeterministically select one communicant among many. Each alter-
native operation specifies a list of guards. Each guard has a set of actions
associated with it that cannot be executed until the value of the
corresponding guard becomes TRUE. Each guard consists of a sequence of
Boolean expressions and an optional input command (output guards were
not allowed in the original specification of csp). A guard is said to be
enabledif each of the Boolean expressions preceding the input command
evaluates to TRUE. The value of a guard is TRUE if the guard is enabled and
its input action has successfully completed.

Implementation of the alternative construct on a multiple processor
computer has been the subject of much research. 4 "' It has been argued
that the exclusion of output guards in the original definition of CSP is too
restrictive and can degrade performance. 6"-0 A generalized alternative con-
struct that allows output guards has since been proposed, and algorithms
to implement it have been developed. 4 ) However, all of the algorithms
reported thus far assume a message-based computer architecture; no shared
memory is assumed. The principal contribution of this paper is to present
an algorithm for implementing the generalized alternative construct on a
shared memory multiprocessor and to prove its correctness. To the
authors' knowledge, no such algorithm has previously been reported.

CSP does not assume shared memory between constituent processes,
so one might ask why implementation on a shared memory machine is an
issue. Implementation of CSP on a shared memory architecture is an
important question for several reasons:

CSP has clean semantics that simplify proving the correctness of
programs. It is a worthwhile programming paradigm in its own
right, independent of the underlying machine architecture.

The message passing paradigm is a natural means of expressing
programs in many application areas that are well suited for shared
memory machines. For example, distributed discrete event
simulation algorithms are usually described in terms of message
passing paradigms,"'2 ' 3) and implementations on shared memory
architectures have been described)' 4 Similarly, message passing is
used extensively in object-oriented programming.

Shared memory machines are widely available. Multiprocessors
such as the BBN Butterfly TM [see Ref. 15] and Sequent BalanceTM
are available from the commercial sector, and numerous shared
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memory research machines such as IBM's RP3 [see Ref. 16] and
the University of Illinois's Cedar [see Ref. 17] have also been
developed.

Shared memory architectures provide fast interprocessor com-
munications. A complete interconnection among processors is
provided, avoiding costly store-and-forward communication
software in message-based architectures such as the Intel iPSCTM
[see Ref. 18]. At present, parallel processors using shared memory
are more appropriate for applications requiring frequent com-
munication among the constituent processes.

Although one can clearly "retrofit" any message-based algorithm to a
shared memory architecture by building a suitable interface, this will often
lead to an inappropriate and awkward implementation. Existing message-
based algorithms for the generalized alternative construct are not
appropriate for a shared memory machine because (1) they do not exploit
the facilities afforded by shared memory, leading to an inefficient
implementation; and (2) they require additional "system" processes to
respond to incoming messages (e.g., requests for rendezvous) resulting in
unnecessary context switching overhead. We will describe an algorithm
for the generalized CSP alternative construct that exploits the facilities
afforded by shared memory and avoids the aforementioned system
processes.

The algorithm is fully distributed and does not rely on any centralized
controller. The notion of total ordering among processes [Ref. 6] is used to
prevent deadlocks, but is applied dynamically on transactions (defined
later) rather than statically as originally proposed. The status of a remote
process can be interrogated directly, in contrast to the message-based
algorithms where message handshake and context switching overheads
reduce the efficiency of the implementation. However, because processes in
the proposed algorithm concurrently access shared data, great care must be
taken to avoid race conditions. An "abort-and-retry" protocol is used to
avoid certain race conditions, and a proof is also included to verify that the
algorithm operates correctly according to safety and liveness criteria. 19"
Modifications are also suggested to achieve fairness. ( "2

The remainder of this paper is organized as follows. The semantics of
the generalized alternative construct are discussed first, followed by a
description of the assumed machine architecture. The proposed algorithm
and a discussion of its operation is then presented. Other important issues
related to the algorithm are then discussed, and an extension to handle
termination of processes is described. We conclude the paper with a proof
of the correctness of the algorithm followed by a discussion of fairness
issues.
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2. THE ALTERNATIVE CONSTRUCT

A guard of the alternative construct can appear in one of two possible
forms. The first, called the pure Boolean form, contains no I/O command.
For example, in

(x=l and y>5)-+z:=z*3

the predicate to the left of the '--' operator is a pure Boolean guard. The
second form, called the I/0 guard form, contains an I/O command as well
as an (optional) Boolean part. For example, in

Pl?x-- z := + 1

the input guard P, ?x requests input from process P,. The received data is
assigned to the variable x. Guards such as this which do not contain a
Boolean part are referred to as pure I/O guards. In effect, the boolean part
is the constant TRUE. An I/O guard is said to be enabled if the Boolean part
is TRUE, so a pure I/O guard is permanently enabled.

Consider the following alternative construct:

[Gi(icpe PB S i [] Giji 10) ' Si]

Where PB stands for the set of indices of all of the pure boolean guards
and 10 the set of indices of all of the I/O guards. Whenever this alternative
construct is executed, exactly one guard is selected and the corresponding
action (Si or Sj) is executed. The selection is made according to the
availability of the guards. For pure Boolean guards, the guard is said to be
available if it is enabled, i.e., if the Boolean part evaluates to TRUE. For I/O
guards, the guard is available if it is enabled and the process associated
with the guard is also ready to communicate using the complementary I/O
command. Because we assume I/O commands only appear in guards of
alternative operations, this implies the remote process is executing an alter-
native operation in which the corresponding 1/0 operation is part of an
enabled guard. If more than one guard is available, one is chosen
arbitrarily. The application program cannot control this selection.

Pure Boolean guards can be resolved without any interaction with
other processes. Therefore, to simplify the discussion which follows, we will
restrict attention to the resolution of I/O guards.

3. THE MACHINE ARCHITECTURE

The machine is assumed to be a shared memory multiprocessor. The
algorithm is well suited for machines such as BBN's Butterfly or Sequent's
Balance, among others. Several primitive are used in the algorithm.
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None are unusual in a multiprocessor environment, and all can be easily
constructed using a test-and-set and standard scheduling primitives.

The CSP program contains processes P,, P2,...,., P. Process Pi is
assigned the unique process ID i to distinguish it from others.

We will assume the following:

" Communications are reliable. An error free communications
mechanism exists so that two distinct processes can communicate
by exchanging a message. In particular, Send(M, R) and Recv(R):
Message provide the same semantics as CSP's output and input
commands, respectively. M is the message which is transmitted and
R is the ID of the remote process with which communications is to
take place. Recv returns the received message (of type Message). In
accordance with CSP semantics, we assume the process invoking
the primitive blocks until process PR executes the complementary
1/0 primitive.

" Read and write accesses to shared memory are atomic, as is
normally the case with a shared memory multiprocessor.
AtomicAdd(X): INTEGER atomically increments the integer
variable X and returns the original value of X.

" WaitForSignal and Signal primitives are available to block and
unblock the process, respectively. A signal contains a single, user
defined integer value. WaitForSignal(): INTEGER causes the
process invoking the primitive to block until a signal becomes
available to it from any other process and returns the integer value
stored within the signal. Signal(R, i) sends a signal containing
integer i to process PR. The Signal primitive wakes up the signaled
process if it is block on WaitForSignal. Otherwise, the signal
remains in effect until PR executes a WaitForSignal primitive. If a
second signal is sent to PR before the first is absorbed by a call to
WaitForSignal, the first signal is discarded.

" Lock and Unlock prinmtives provide exclusive access to shared data
structures. Lock(L) will block until the lock L becomes zero, at
which time L is set to one. The "test-and-set" operation must be
atomic. Unlock(L) sets the lock L to zero. Further, we assume the
Lock primitive is fair, i.e., if a process is blocked while attempting
to obtain a lock, it does not remain blocked an unbounded
amount of time unless the lock is not unlocked for an unbounded
amount of time.

It is assumed that all input and output commands occur within guards
of the alternative construct. Simple CSP input and output primitives are
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special cases of the alternative construct. Simple CSP input and output
primitives are special cases of the alternative construct. We also assume
that the variables used in the alternative algorithm are not modified by
processes except as indicated in the algorithm. Finally, it is assumed that
processes do not terminate. The algorithm can be extended to handle
termination, as will be discussed later.

4. THE ALTERNATIVE ALGORITHM

Each invocation of an alternative operation is referred to as a trans-
action. A transaction begins when an alternative operation is initiated and
ends when a successful communication has been completed. A process will
usually engage in many transactions during its lifetime. A total ordering is
imposed among all transactions entered by all processes of a given CSP
program. A unique sequence number, referred to here as a transaction ID,
is associated with each transaction.

Two processes, each of which initiates an alternative operation that
results in a communication between them, are said to rendezvous. More
precise definitions of rendezvous and other terminology introduced in this
section will be presented later. Each rendezvous always involves exactly
two distinct processes. In a typical rendezvous, the first process to enter the
alternative will block, waiting for a signal from the second. When the
second process enters the alternative, it will commit to the first in order to
obtain "permission" to rendezvous; the "committing" process will then
signal and exchange a message with the blocked process, and both will
complete their respective alternative operations.

A commit operation is, in effect, a request for rendezvous. It will be
shown that a rendezvous will occur only after a successful commit
operation has taken place, and every successful commit results in a rendez-
vous. A process will not attempt to commit until it has determined that the
process with which it is committing is a suitable candidate for rendezvous,
i.e., each lists the other in their respective guard lists, and the two processes
are not both trying to execute the same 1/0 operation (Send or Rect'). The
commit operation resolves conflicts when two different processes attempt to
simultaneously rendezvous with a third. The algorithm uses an "abort
and retry" mechanism to avoid race conditions when two potential
communicants simultaneously enter the alternative command.

4.1. Process States

Each process can be in one of the following states:

* WAITING. The process is blocked on a WaitForSignal operation,
waiting for another process to rendezvous with it.
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" ALT. The process has begun an alternative operation, and is
scanning through its list of guards to find a process with which it
can rendezvous.

• SLEEPING. The process was forced to abort an alternative
operation. Each time the process aborts, it goes to sleep for some
time before retrying. While blocked in this way, the process is in
the SLEEPING state. This state differs from the WAITING state
because a process may remain in the latter for an unbounded
amount of time.

* RUNNING. The process is executing user or system code not
related to the alternative operation. The process is in the RUNNING

state if it is not in any of the other states listed above. Once the
process initiates an alternative operation, it can oaly be in the
WAITING, ALT, or SLEEPING state until the alternative operation
completes with a rendezvous.

It is possible to combine the RUNNING and SLEEPING states into a single
state. Two states are used to simplify the description of the algorithm and
its proof.

A state transition diagram for each process is shown in Fig. 1. Initially,
a process is in the RUNNING state. Once the process initiates an alternative
operation, it enters the ALT state. If the process is forced to abort the alter-
native it switches to the SLEEPING state, and returns to the ALT state when
it retries. If the process is able to commit and rendezvous with another
process, it returns to the RUNNING state. Otherwise, the process moves to
the WAITING state until some other process commits to it, at which time it
rendezvous and returns to the RUNNING state.

The ALT and SLEEPING states should be viewed as "transitory" states
through which a process passes while trying to commit or move into the
WAITING state. It will be shown that a process cannot remain in either the
ALT or the SLEEPING state for an unbounded amount of time on a single
transaction.

4.2. Shared Variables

Each process Pj maintains a number of variables that may be

examined, and in some cases modified, by other processes:

" AltListj lists the guards associated with the last alternative
operation initiated by P. that caused Pj to enter the WAITING state.

* AhiLockj is a lock used to control access to AltListj. It is initialized
to 0 (unlocked).
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" State holds the current state of Pj. It may be set to WAITING, ALT,
SLEEPING, or RUNNING, and is initialized to RUNNING.

* WakeUp is initialized to 1 and is set to zero by P whenever it
enters the WAITING state. It is incremented (atomically) by
processes trying to commit to P. This variable prevents two
processes from both successfully committing to a third on a single
transaction.

There is also one system wide global variable used by the algorithm:

NextTranslD is initialized to zero and is incremented each time a
process initiates an alternative operation. This variable ensures a
unique transaction ID can be generated for each instance of an
alternative operation.

Use of a global variable to generate unique transaction IDs is not
strictly necessary. It is possible to generate unique transaction IDs that
conform to the requirements of the algorithm without use of any shared
variables. This will be discussed later.

One procedure merits special attention. CheckAndCommit(m, g,):
INTEGER is called by process P, (I denotes the local process) to check that
"valid" communications can take place between P, using guard g, and Pm
(m denotes the remote process). If so, P, attempts to commit to P.. If
successful, CheckAndCommit returns a positive integer indicating the
corresponding guard in the remote process P.. Otherwise. CheckAndCom-

RUNNING
commit and~abort

invok
rendevous alternative ALT

command~retry
could not

~rendevous

WAITING

Fig. 1. State diagram of each process.
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mit returns a nonpositive integer, denoted by the constant FAILED. This
procedure is shown in Fig. 2.

CheckAndCommit uses a procedure CheckGuard(AtListm, gi):
INTEGER that scans the remote alternative list AltListm looking for a
matching and compatible guard gj to the local guard gi. By matching we
mean gj contains an 1/O operation with P. By compatible we mean g, and
gj do not both contain input (output) commands. ChechGuard returns an
integer j that denotes the number of a matching and compatible guard if
one was found, and FAILED otherwise. If such a guard is found, P, attempts
to commit to Pm by testing if WakeUpm is zero, and if so, incrementing it.
An ordinary addition is used rather than the AtomicAdd primitive to
increment WakeUpm because AltLock, guarantees atomicity. If P, is
the first process to commit to Pmo, i.e., if WakeUpm was previously zero,
then P successfully commits, CheckAndCommit returns the number of
the corresponding guard, and rendezvous is imminent. Otherwise,
CheckAndCommit returns FAILED. AltLockm ensures serial access to
AltListm. As will be demonstrated later, it is crucial that this lock is not
released until after the commit operation is attempted (if it is attempted) in
order to avoid race conditions. This would be the case even if an
AtomicAdd operation were used to increment the WakeUp variable.

1* a is the remote process *1
PROCEDURE CheckhndCommit(m,9g): INTEGER;
VAR

INTEGER GuardNumber; /* number of matching guard */
BEGIN

Lock(AltLock.);
1" check guard matches and is compatible */
GuardNumber := CheckGuard(AltListi, gi);
IF (GuardNumber = FAILED) THEN

Unlock(AltLock.);

RETURN (FAILED);
/* try to commit */
ELSEIF (WakeUp. - 0) THEN

WakeUps a WakeUp. + 1;

Unlock(AltLock.);
RETURN (GuardNumber);

ELSE
Unlock (AltLocks);
RETURN (FAILED);
END;

END CheckAndCommit;

Fig. 2. Procedure to check that a potential communication is valid and, if so,
to commit. The CheckGuard function returns the number of a matching (and
compatible) remote guard or returns FAILED if none was found.
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4.3. Other Notation

For notational convenience, other variables and predefined functions
are defined that are used in the algorithm. These include:

• TransID, is a variable that contains the ID of the current trans-
action in which process P, is engaged.

" CommunicantID(g,) is a function that returns the ID of the
process listed in the I/0 command portion of guard g,.

" Communicate(gi) executes the I/O command in guard g,.

4.4. Description of the Algorithm

The alternative algorithm is shown in Figs. 3 and 4. The Alternative
procedure shown in Fig. 3 is a "front end" that is responsible for retrying
aborted attempts. It does not return until a rendezvous has been completed
at which time it returns an integer indicating the guard that was eventually
satisfied. The heart of the algorithm lies in the Tr vAlternative procedure
shown in Fig. 4. The parameters passed to this and the Alternative
procedure are n enabled I/O guards g, g2, ... g,. Each guard contains
either a single output or a single input primitive.

The Alternative procedure first obtains a unique transaction ID by
performing an AtomicAdd operation on the global NextTransID variable.
It then attempts to rendezvous by calling the TrvAlternative procedure.
TryAlternative either returns the number of the guard on which a rendez-
vous occurred, or the FAILED flag indicating the attempt must be retried.
The same transaction ID remains in use despite one or more failed

/* gi are enabled I1/0 guards */
PROCEDURE Alternative(gi, .... g.): INTEGER;
VAR

INTEGER ReturnValue; /* indicates guard that rendezvoused */
BEGIN

/* 1 is the local process id *1
TransID1 := AtomicAdd(NextTranslD);
ReturnValue :- FAILED;
WHILE (ReturnValue a FAILED) DO

ReturnValue :u TryAlternative(gl, ... gn);
END;

RETURN (ReturnValue);
END Alternative;

Fig. 3. The "front end" procedure. TryAlternative returns the number of the guard on which
a rendezvous took place or FAILED if it aborted.
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attempts. It will be shown that TryAlternative cannot fail an unbounded
number of times within a single transaction. In the discussed that follows,
P again refers to the local process and P. to the remote process with the
guard that is being scanned.

PROCEDURE Tryklternative(gj. .... ga): INTEGER;
VAR

BOOLEAN flag;
INTEGER GuardNuber; /* corresponding guard of Pa */
INTEGER i, m, RemotelD;

BEGIN
State1 :- ALT;
/* look for rendezvous with a waiting process. *1
FOR i:=1 TO n DO

a :- CommunicmntID~gi);
flag :- TRUE;
WHILE (flag) DO

CASE States DO /* The remote process state. */
RUINIG: flag :- FALSE;
SLEEPING: flag :a FALSE; /* try next guard */
WAITING: GuardIumber := CheckAndComit(m, gi);

IF (Guard~umber - FAILED) THEN
flag := FALSE; /* try next guard */

ELSE /* Wake up Ps */
State, :* RUNNING;
Signal(m. GuardNumber);
ComAnicate(gi);
RETURN (i);
END;

ALT:RemoteID := TransIDs;
IF (TranoIDi < RemotelD) THEN

WHILE ((State, - ALT) AND (RemoteID - TransID3 )) DO END;
ELSE

State1 :& SLEEPING:
WHILE ((States - ALT) AND (RaoteID = TransID.)) DO END;
RETURN (FAILED); /* abort...*/
END; /* if-then-else */

END; /* case statement *1
END; /* while loop */

END; /* for statement */
/* couldn't find guard to rendezvous */
Lock(AltLock); AltListj:u(g, ... , gn); Unlock(AltLockl);
WakeUpl :0 ; /* first to commit gets rendezvous */
Statel := WAITING; i :- WaitForSignalO; Statel := RUNNING;

Communicate(gi);
RETURN (i);

END TryAlternative;

Fig. 4. The TryAlternalive procedure attempts to rendezvous.
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After setting the state of the process to ALT, P, examines each guard
listed in the alternative operation one after the other. Some action is then
performed depending on the state of P'.

If Pm is in the RUNNING state, P, simply advances to the next guard. In
this case, Pm has not yet entered a transaction and is not yet ready to
rendezvous.

If P, is in the SLEEPING state, P, again advances to the next guard. P
advances because the Alternative procedure guarantees that the SLEEPING
process (Pm) will eventually retry its alternative operation. It will be shown
later that a process cannot remain in the SLEEPING state for an unbounded
amount of time. If P, and Pm are destined to eventually rendezvous on this
transaction, P, will typically proceed to the WAITING state, and P,,, will
later retry, commit, and rendezvous with P.

If Pm is WAITING, then Pm has already reached the rendezvous point
so P, attempts to rendezvous. AltList,, is examined to make sure a valid
communication can take place, and if so, P, attempts to commit. If
successful, P, will awaken Pm (by sending a signal) and rendezvous.
Otherwise, P, advances to the next guard.

Finally, if Pm is in the ALT state, some spcial precautions must be
taken to avoid race conditions. This situation could result, for example,
when Pl and Pm initiate an alternative operation at approximately the same
time. The two processes may or may not be destined to rendezvous,
however. In fact, Pm's alternative operation may not even contain a guard
with P, as a communicant.

If P, sees Pm in the ALT state, P, will pause in a busy wait loop until
Pm either changes to another state or advances to a new transaction. To
avoid deadlock (e.g., two processes each waiting for the other to leave the
ALT state), P, will first change to the SLEEPING state if its transaction ID is
larger than that of P,$s. In this case, P, must abort and retry the operation
after Pm changes state in order to avoid race conditions (discussed later, in
the proof of Lemma 8). Because higher priority is given to the process with
a smaller transaction ID, the priority of each transaction tends to increase
with time. This is necessary to ensure liveness in the algorithm.

Although the busy wait loop and abort retry scenario might initially
appear to cause wasted time that could be better spent pursuing other
activities, it is anticipated that this situation will arise infrequently in prac-
tice. Performance evaluations using empirical techniques are currently in
progress to verify that this is the case.

It is interesting to note that the state of P,,, may change immediately
after P, examines State,. It will be proven that the algorithm operates
correctly despite this apparent inconsistency. In fact, it will be shown that
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the only locking that must be performed in the entire algorithm is that
associated with AltLock.

If P goes through its entire guard list without rendezvousing with
another process, P enters the WAITING state and calls WaitForSignal to
block until another process commits to it. Before calling WaitForSignal,
however, P, also sets AltListl to contain the current guard list and
"activates" WakeUp by setting it to zero. After some process later commits
to P1, a signal is received, a communication takes place, and TryAlternative
returns the identity of the (local) guard that rendezvoused. This infor-
mation was sent to P, in the signal that awakened it.

We should emphasize at this point that it is crucial that the operations
listed in Figs. 2-4, be perfornd in exactly the order in which they appear.
Seemingly minor changes such as swapping the order of the statements

WakeUp, :=O;
State, := WAITING;

introduces a race condition that invalidates the correctness proof.
We note that the Lock operation preceding the statement that

modifies AltList must remain even if modification can be done atomically.
The locking protocol in this and the CheckAndCommit procedure are
carefully designed to avoid race conditions. Finally, it is noteworthy that
the statement that sets WakeUp, to zero need not be executed while
AltLock, is locked. The correctness proof only requires that two processes
do not both read a zero value from WakeUp, during a single transaction
of P1.

5. DISCUSSION

Several aspects of the alternative algorithm merit further discussion.
These are discussed next.

5.1. Transaction IDs

The algorithm uses dynamically assigned transaction IDs to determine
the "winner" when a process finds another in the ALT state. Dynamic IDs
are used rather than static, process IDs to ensure liveness. Intuitively,
liveness means that two processes that "should" rendezvous eventually will,
while safety means that any rendezvous that occurs is valid. The proposed
approach avoids scenarios in which a process is repeatedly forced to abort
and retry its alternative opzration an unbounded number of times; this is
because the priority of a transaction automatically increases with time as
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other transactions are allowed to complete and new ones, with higher IDs
and correspondingly lower priorities, are initiated. Dynamic transaction
IDs guarantee this property while static IDs do not. It is important that a
new transaction ID is only allocated when an alternative is first initiated,
as in done in Fig. 3, and not when an existing operation is retried.

One can avoid using a global variable (NextTransID) to generate
transaction IDs if contention is a concern. This function can be performed
locally, within each process. Process P can create a new, unique, trans-
action ID by concatenating a local sequence number with 1, the unique ID
for the process. The sequence number is incremented each time a new
transaction ID is created by that process. It is imperative that the process
ID occupy the least significant portion of the transaction ID to ensure
liveness, as was discussed earlier.

A second concern is overflow of the NextTransID variable. Overflow
invalidates the liveness property of the algorithm because a transaction's
priority does not necessarily increase with time. Also, because transaction
IDs cannot be guaranteed to be unique after overflow has occurred, the
arbitration protocol could fail (this could be circumvented by appending
the process ID to the least significant portion of the transaction ID,
however). In any event, overflow can be easily avoided by using a variable
of large precision. For example, a 64 bit variable will not overflow with
1000 processes, each initiating a new alternative construct every micro-
second, in over 500 years!

5.2. Channel I/O

In many CSP implementations, interprocess communication is based
on pre-allocated channels. Each channel is a unilateral link between two
communicating processes. The channel model facilitates modularity,
reusability, and hierarchical construction of programs because a program
can be "constructed" by interconnecting a group of constituent processes.
The algorithm presented above can be adapted to the channel I/O model
by modifying the Send and Recv primitives and translating port identifiers
to process IDs. The CheckAndComrnit procedure, for instance, must be
modified to check for matching channels rather than matching process IDs.
These modifications are a simple extension of the proposed algorithm.

5.3. Termination

Termination is another important issue facing real implementations.
This was not treated in the previous discussion to simply the presentation.
The termination semantics play an important role in CSP because it is the
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basis of the termination of the repetitive command."' If an alternative
operation is embedded within a repetitive command and no guard of the
alternative can become true, e.g., because all processes associated with
enabled guards have terminated, the repetitive command terminates. If no
such repetitive command surrounds the alternative operation and it is
found that no guards can become true, an error results.

In the context of the proposed algorithm, it is sufficient that the Alter-
native procedure determine when no guards can become satisfied and
return an appropriate flag denoting this situation. The algorithm can be
extended to handle termination by adding a shared variable called
GuardCount, to each process P, and a new process state called TERMINATED.
GuardCounti indicates the number of I/O guards on which Pi might poten-
tially rendezvous in the current transaction and contains a meaningful
value whenever Pi is in the WAITING state. It is equivalent to the number of

guards in AltList,. The GuardCount, variable is used to detect situations in
which P, cannot rendezvous because all of the processes in its guards have
terminated. This is the only case in which the Alternative procedure will
return without rendezvous.

Whenever a process Pj terminates, it marks its state as TERMINATED
and then examines the state of each of its neighboring processes, i.e., those
processes which might communicated with Pj. If Pj finds another process
P, in the ALT state, it executes a busy wait loop until State, changes. This is
necessary because Pj cannot know if P, saw Pj had entered the TERMINATED
state. If Pi finds P, in the WAITING state and AltList contains a guard
listing P as a communicant, then Pj (atomically) decrements GuardCounti
to indicate that one fewer guard is available for rendezvous. No further
action is required unless the decrement operation causes GuardCount, to
become zero. In this case, the terminating process must send Pi a special
signal to indicate Pi's alternative operation can never rendezvous. Upon
receiving this signal, the alternative operation in Pi will return a special flag
indicating the alternative operation completed without rendezvous.

When looking for a process with which to rendezvous, i.e., when scan-
ning the status of neighboring processes in the TryAlternative procedure,
an I/O guard corresponding to a terminated process is skipped in the
same way processes in the RUNNING or SLEEPING state are skipped. Such
guards are excluded from AltList, and GuardCount, should the process
fail to rendezvous and move into the WAITNG state. If all I/O guards
correspond to terminated processes, the alternative construct again returns
a flag indicating the operation completed without rendezvous.

Finally, some precautions must be taken to avoid race conditions. The
mechanism described above to notify a WAITING process that it cannot ren-
dezvous on any of its guards bears some resemblance to the protocol used
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to commit to a process-the WakeUp variable is analogous to GuardCount
and committing (by incrementing WakeUp) is analogous to decrementing
GuardCount. Therefore, it is not surprising that the precautions that are
necessary to avoid race conditions are similar. In particular, GuardCount,
must be set before P, sets State, to WAITING but after Pi modifies AltList,
(see Fig. 4). Identical containsts apply regarding the moment at which
WakeUp to set to zero. Finally, when P wishes to decrement GuardCount,,
the same protocol that was used in the CheckAndCommit procedure (see
Fig. 2) to lock AltLock, must be used to decrement GuardCount,, i.e.,
AltLock, must not be released until after the decrement operation has
completed.

6. Proof of Correctness

The correctness of the algorithm is established by proving that during
the (potentially) infinite execution sequence, all processes and the interplay
between them maintain invariant properties known as safety and
liveness. (14.21 As previously described, safety means that any rendezvous
which occurs is correct. For example, it is not possible for two processes to
rendezvous which do not each list the other in some guard of their respec-
tive alternative lists. Liveness ensures that two processes which should
rendezvous eventually will, provided of course each does not first rendez-
vous with some other process. These terms are defined more formally in
Theorems 2 and 3. Intuitively, the safety property ensures that nothing
"bad" will happen, while liveness ensures something "good" will eventually
happen. Together they guarantee correct operation of the algorithm.

Before beginning the proof, terminology that has been used informally
until now will be defined more precisely. These definitions are in terms of
the alternative algorithm shown in Figs. 2-4. It is assumed throughout that
the CSP program consists of a collection of processes P1 , P2 ,-.., PN.

6.1. Definitions

1. A process P, is said to enter a transaction Tr when Pi calls the
Alternative function. It exits transaction T, when it returns from
the function call. The notation Pi(T,) should be read "process P,
(while P, is in transaction T)." It will be clear from the context
that this notation is used that P, must be in some transaction.
Each transaction has a unique ID associated with it (r for trans-
action T,) that is used to form a total ordering among all trans-
actions. A transaction need not terminate. For example, the
application program may deadlock.
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2. A process Pi in transaction T, is said to commit to process Pj if
P,(T,) increments WakeUpj from zero to one. The algorithm is
such that every time WakeUpj is incremented, a commit operation
takes place.

3. A transaction T, executed by process Pi is said to rendezvous with
transaction T, for process Pj if either (a) P, is in the WAITING state
and receives a signal from Pj, or (b) P, signals P after committing
to Pj. It will be shown that once a process rendezvous, it will

exchange a message, complete the current transaction and return
to the RUNNING state.

4. A signal sent by Pi to P, is said to be pending if (I) it was sent but
has not yet been received by Pj, or (2) it was received, but has not
yet been absorbed by P through a call to WaitForSignal.

5. A communication between Pi and Pj is compatible if one process
wishes to send, and the other wishes to receive. Otherwise, the
communication is said to be incompatible.

6. VARi(T,) denotes the value of state variable VAR of process P,
during transaction Tr. For example, AltList ,(T,) is the alternative
list of Pi during transaction Tr. If significant, the point in time
during the transaction that is referred to will be stated explicitly.

7. GuardList(T,) lists the guards that are passed as parameters to
the alternative operation executed by Pi on transaction T,. We
will take the liberty of giving GuardList a dual meaning-it either
refers to a list of guards or a list of processes that are designated in
the I/O commands of these guards. The particular meaning that is
intended will be clear from the context.

6.2. The Safety Property

Lemmas 1-5 and Theorem I state that no race conditions arise that
might cause a process to mistakenly rendezvous with a second process that
does not wish to rendezvous with the first. Theorem 2 subsumes Theorem 1
and ensures that the algorithm obeys the safety property.

Lemma 1. Pi(T,) signals Pj iff P,(T,) commits to Pj.

Proof. This follows immediately from examination of the algorithm.

A process only sends a signal after it commits, and always sends a signal
after it commits. I

Lemma 2. At the beginning and at the end of each transaction

entered by Pj, the following conditions must hold:
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(a) No signals sent to Pj are pending.

(b) WakeUpj is nonzero.

Proof. Use induction on k, the number of transactions entered by Pj.
Consider the first transaction (k = 1) executed by Pi. Condition (b) must
be true at the beginning of this transaction because WakeUpj is initialized
to 1 and is only modified by Pj during a transaction. Condition (a) is also
true because no process can send a signal to P. until WakeUpj is reset to 0.

If Pj does not reset WakeUpj to 0 during its first transaction, (a) and
(b) are trivially true at the end of the transaction. If Pj does reset WakeUpj
to 0 during its first transaction, (a) and (b) are true at the end of the trans-
action because (1) Pj resets WakeUpj to 0 at most once during any trans-
action; (2) the atomicity of the "test-and-increment WakeUpj" operation in
the CheckAndCommit procedure guarantees that at most one process will
commit and send a signal to Pj as a result of WakeUpj being set to 0; and
(3) Pj always calls WaitForSignal after resetting WakeUpj to 0, so the only
signal that can be sent to P must be absorbed. Therefore, (a) and (b) are
again true at the end of the first alternative operation as well as at the
beginning.

Inductive step: Assume lemma 2 is true on the end of the kth trans-
action entered by Pj. It is easy to see that lemma 2 is also true at the begin-
ning and end of the k + 1st transaction entered by Pj using arguments
identical to those presented before. I

Lemma 3. Two processes, P, and P, cannot both commit to a
third process Pk during a single transaction T, entered by Pk.

This lemma was actually proven as part of the proof of Lemma 2, but
we include it as a separate lemma for future reference.

Lemma 4. If P,(T,) commits to Pj, then P, must have been in the
WAITING state when Pi committed to P, and P must remain in the
WAITING state until P receives the signal sent by Pi that results from this
commitment.

Proof. P, check that Pj is in the WAITING state before trying to com-
mit to Pj. Let us assume Pj is in transaction T, when P, sees Pi in the
WAITING state. Therefore, it only remains to be shown that Pj is still in the
WAITING state in transaction T, when P commits, as well as when the
signal is received.

Suppose Pj completed T. beforc Pi committed. Then, Pj must have
advanced to another transaction (T,) and reset WakeUp to 0 before P,
committed, or else Pi's commit would have failed. If Pie GuardListj(T,), P
would not have been able to scan past the guard containing Pi because P,
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is in the ALT state, so it must be that Pi GuardListj(T,). Then, it must be
that (1) P checked AltListj while the list corresponded to some transaction
preceding T, (or again, the commit would have failed); (2) Py(T,) modified
AlListj and reset WakeUpy to 0; and (3) Pi successfully committed to Pj.
However, the CheckAndCommit operation guarantees that checking AitList
(step 1) and committing (step 3) are atomic, so AltList, could not have
been modified between these two operations. Therefore, P must have still
been in T, when Pi committed.

Pj must also remain in the WAITING state until the signal is received
because P1 cannot leave this state until it first receives a signal. By Lem-
ma 2a, there were no signals pending when transaction Ts began. By
Lemma 3 no process other than P, will commit to Pj during this trans-
action, so no signal other than Pi's are sent to, or received by Pj during T,.
Therefore, Pj cannot unblock from the WaitForSignal operation and
therefore cannot change state until receiving the signal sent by P,. I

The preceding lemma shows that arbitrarily long delays may occur
from the time Pi observes that Pj is in the WAITING state until Pi's signal
actually arrives at Pj. If the commit succeeded, this lemma guarantees that
nothing "interesting" will happen at Pj from the time P, found it to be
waiting until the signal was received. This lemma also highlights the
necessity of ensuring that checking the remote guard list and committing
are implemented as an atomic operation.

Lemma 5. No signals are lost in the alternative algorithm.

Proof. This follows immediately from the previous lemmas. No
signals can be sent to a process while another signal is pending, so none are
lost. I

Theorem 1. If Pi(T,) signals (rendezvous) Pj, then Pj must be in
some transaction T, both when the signal is sent and when it is received.
Further, Pj(Ts) rendezvous Pi(T,).

Proof. By Lemma 4, P must be in a transaction when the signal is
sent and when it is received, and remain in the WAITING state during this
period. By Lemma 5, Pi's signal cannot be lost. By Lemmas 1, 2a, and 3,
this is the signal received by P during transaction T , eliminating the
possibility of P1 accepting another signal instead of Pi's. Because Pj always
executes WaitForSignal when in the WAITING state, the signal from P, must
be received and absorbed, implying Pj rendezvous with Pi. I

Theorem 2 (Safety). If Pi(Tr) commits to Pj(TJ), then the follow-
ing properties must be true:
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1. (Mutual consent) Pi(T,) rendezvous P,(T,) and P,(T,) rendezvous
P,(T,). In other words, the two communicating parties agree each
is rendezvousing with the other.

2. Pje GuardList,(Tr) and Pe GuardListj(Ts).

3. Communications between P(T,) and Pj(Ts) are compatible.

4. Pi and Pj will eventually communicate, complete their transaction,
and return to the RUNNING state.

5. There does not exist a third process P, (k # i and k j) such that
Pk(T,) rendezvous with either Pi(T,) or Pj(Ts).

Proof.

1. P,(T,) commits to Pj(T , implying Pi(T,) signals Pj(Ts)
(Lemma 1). This in turn implies the mutual rendezvous according
to Theorem 1.

2. The first part, Pj E GuardListi(T,), is trivially true because P,
would not have scanned Pj were this not the case. The second
part, P, E GuardListj(T), must also be true because this condition
is checked by the CheckAndCommit procedure after P, discovers
Pj is in the WAITING state. According the Lemma 4, P, remains in
the WAITING state until it receives the signal sent by P,.

3. Compatibility is checked when P,(T,) checks that it is in
AltListj(Tj. Therefore, the proof of this part is identical to that
used in part (2).

4. Once rendezvous occurs between P,(Tr) and Pj( T), each process
initiates a communication with the other. Properties (2) and (3)
and the reliability assumption regarding the communication
mechanism guarantee that the communication succeeds. Once this
occurs, completion of the alternative operation immediately
follows.

5. Suppose Pk(T,) rendezvoused with either P(AT,) or Pj(T ). Recall a
rendezvous occurs by either sending or receiving a signal to or
from another process, so there are four possibilities:
(a) Pk(T,) received a signal from P,(Tr);
(b) Pk(T,) received a signal from Pj(Ts);
(c) Pk(T,) sent a signal to P,(T,); or
(d) Pk(T,) sent a signal to Pj(Ts).
However, (a) would imply Pi sent two signals during a single
transaction. It is clear from the algorithm that this cannot occur.
(b) and (c) imply that either P, or Pj send and receive a signal
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during a single transaction. Again, it is clear from the algorithm
that this cannot occur. (d) implies Pj receives two signals during a
single transaction. This is not possible because of Lemas 3 and 4.
Therefore, none of these situations is possible. |

6.3. The Liveness Property

The liveness property guarantees that no deadlock or livelock
situations can arise within the alternative algorithm. Such situations can
only be caused by an erroneous application program. Lemmas 6-12 and
Theorem 3 prove that the liveness property is maintained by the proposed
algorithm.

Lemma 6. A process Pi will never return to the RUNNING state
after entering a transaction unless a rendezvous occurred.

Proof. By inspection of the alternative algorithm, the process only
returns to the RUNNING state when either: (a) P,(T,) signals Pj or (b) after
Pj(T,) receives a signal from Pj. In either case, Pi(T,) rendezvoused
with Pj. I

Lemma 7. A process P, cannot remain blocked on a Lock
operation in the alternative algorithm for an unbounded amount of time.

Proof. The only Lock operation performed by the algorithm is to
serialize accesses to AltList. However, no unbounded loop or blocking
primitive is executed before the corresponding Unlock is performed. No
process will remain blocked attempting to obtain a lock for an unbounded
amount of time because every lock will eventually by unlocked, and the
Lock primitive is assumed to be fair. I

Lemma 8. Suppose P, cGuardListj(T) and Pje GuardListi(Tr),
and their respective I/O guards are compatible. Pi and P1 cannot both
block for an unbounded amount of time in the WAITUNG state during
transactions T, and Ts, respectively.

Proof. Suppose both P, and P, block in the WAITING state on T r and
T,, respectively. Because Pi reached the WAITING state, it must be the case
that the last time P, scanned the state of Pj before Pi entered the WAITING

state, Statej was either (1) RUNNING, (2) SLEEPING, or (3) WAITING but Pi
failed to commit to Pj. Consider the third case. Pj must have been in a
transaction preceding T, for this case to apply because if P, had been in
T , Pj would have rendezvoused with some other process and completed
T, contradicting our initial assumption that Pj(T) blocked in the
WAITING state for an unbounded amount of time. Therefore, if case (3)
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applies, Pj must have been in a transaction previous to T, when P,
observed it to be in the WAITING state.

Similarly, Pj also reached the WAITING state, so P, must have been in
the RUNNING, SLEEPING, and WAITING state for a previous transaction the
last time Pj scanned P, before Pj entered the WAITING state. Pi and Pj could
not have both scanned each other at the same instant because each would
have found each other in the ALT state. Without loss of generality, let us
assume Pi scanned Pj first. Pi(T,) was in the ALT state when it scanned Py,
and because it did not rendezvous or abort (the latter would require Pj to
be scanned again, making this not the last time P, scanned P), Pi must
have remained in the ALT state until it changed to the WAITING state and
blocked indefinitely. Therefore, when P1 later scanned Pi for the last time,
P must have seen Pi in either the ALT or the WAITING state for transaction
T,. However, this contradicts the fact that Pj saw Pi in the RUNNING,
SLEEFiNG, or WAITING state for a previous transaction. Therefore, the
original hypothesis that P, and Pj both entered the WAITING state must be
false. I

The proof of Lemma 8 relies on the fact that processes leaving the
SLEEPING state abort and retry the alternative operation rather than simply
resume it. If resumption were used, a race condition would exist whereby P,
and P might both enter the WAITING state.

Lemma 9. The TryAlternative procedure cannot retuni FAILED an
unbounded number of times during a single transaction T,. in some
process P,.

Proof. Suppose the TryAlternative procedure fails an unbounded
number of times. TryAlternative returns FAILED if and only if Pi scans
another process P and finds Pj is also in the ALT state, and TransID, <
TranslDi. The number of guards in GuardList is finite, so these conditions
persist in (some) P an unbounded amount of time. Because there are only
a finite number of transactions with IDs less than TransJD1 , this condition
must persist within a single transaction T. Pi will not retry until P leaves
the ALT state, so Pj must also abort (changing to the SLEEPING state) and
retry (changing back to ALT) an unbounded number of times.

Similarly, Pj will only continue to abort if some other process Pk exists
which also fails within a single transaction an unbounded number of times,
and TranslDk < TranslDi. Because the number of processes is bounded,
a cycle of processes must exist such that TranslD1 > TranslDi>
TranslDk > ... > TranslD,, which of course, cannot occur. Therefore, a
process cannot fail the TryAlternative procedure an unbounded number of
times. 3
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Lemma 10. A process Pi cannot remain continuously in the ALT
state during a single transaction T, for an unbounded amount of time.

Proof. Because GuardList is bounded in length, we must show that
P, does not spend an unlimited amount of time scanning a particular
guard. This can only occur if some other process Pj exists such that (1) P,
continually samples Pj while Statej is ALT, (2) P remains in the same
transaction with ID TransJDj, and (3) TransID1 < TransIDj .

According to the previous lemma, Pj cannot abort and retry the alter-
native operation within a single transaction an unbounded number of
times. Therefore, P, must also remain continuously locked in the ALT state
an unbounded amount of time.

An argument similar to that used in the previous lemma can now be
used. P, will only remain continuously in the ALT state an unbounded
amount of time if some other process Pk is in Pj's GuardList, TransiD, <
TranslDk, and P, remains continuously in the ALT state an unbounded
amount of time. A cycle of processes must exist such that each is waiting
for the next process in the cycle to leave the ALT state. This would require
that TranslD < TransID < TranslDk < ... < TransllD, so no such cycle
can exist. I

Lemma 11. A process Pi cannot remain continuously in the
SLEEPING state during a single transaction Tr for an unbounded amount of
time.

Proof. Pi can only remain in the SLEEPING state an unbounded
amount of time waiting for some process Pj if (1) Pi continually samples P,
while Statej is ALT, and (2) P remains in the same transaction T .

These conditions can only persist if either Pj aborts and retries the
transaction T, an unbounded number of times, or Pj remains continuously
in the ALT state for an unbounded amount of time. Lemmas 9 and 10
proved that neither is possible, so Pi cannot remain in the SLEEPING state
an unbounded amount of time. I

Lemma 12. For each alternative operation initiated by Pi, Pi even-
tually either rendezvous with some other process Pj and returns to the
RUNNING state or moves to the WAITING state.

Proof. The only way a process can not reach the WAITING state or
rendezvous is to remain continually in the ALT state, remain continually in
the SLEEPING state, or switch back and forth between ALT and SLEEPING an
unbounded number of times. The latter case implies TryAlternative fails an
unbounded number of times within a single transaction. None of these is
possible according to Lemmas 9-11. 3
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Theorem 3 (Liveness). Suppose two processes Pi and P, each
initiate an alternative operation and PjeGuardListi(Tr) and PG
GuardListj(T.) and their communication requests are compatible. If neither
Pi nor Pj rendezvous with another process during their respective trans-
actions, Pi and Pj will eventually rendezvous with each other during T, and
Ts, respectively.

Proof. According to Lemma 12, Pi and Pj must each eventually
either rendezvous or enter the WAITING state. They both cannot enter the
WAITING state according to Lemma 8. Therefore, at least one of the two
processes, say P,, must rendezvous. By assumption, P, cannot rendezvous
with any process other than Pj, so P, must rendezvous with Pj. By
Theorem 2, Pj must also rendezvous with P,. Therefore, P, and Pj must
eventually rendezvous with each other. *
7. FAIRNESS

One issue regarding the alternative construct that has received con-
siderable attention is fairness. In particular, two types of fairness, weak and
strong fairness, have been defined in Refs. 20 and 22. We call an implemen-
tation of the alternative construct weakly fair if it can be guaranteed that
during the infinitely repetitive execution of an alternative command, a
guard that remains continuously available (i.e., enabled and the neighboring
process is ready to communicate) will eventually rendezvous. An
implementation is said to be strongly fair if the implementation guarantees
that any guard which is available infinitely often (though not necessarily
continuously as is the case in weak fairness) will eventually rendezvous.

The algorithm shown in Figs. 2-4 is not fair in either the weak or
strong sense. However, weak fairness can be achieved by modifying the
algorithm so that the order in which the TryAlternative procedure scans
guards, which implies a certain prioritization of the guards, varies from one
call to the next so that each guard is eventually scanned first. More
precisely, we modify the algorithm as follows:

" Define a distinct integer variable for each alternative construct in a
given CSP program. These variables could be defined by the com-
piler. Associate with the kth alternative construct in process Pi the
variable Alti.k. Initially set to 0, this variable is incremented each
time this particular alternative construct is invoked. It therefore
indicates the number of times P, has invoked the corresponding
alternative construct.

" The FOR loop in the TryAlternative procedure is modified so that
it begins scanning guard (Altik mod n) + 1 rather than the first
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guard, where n is the number of guards in the alternative construct.
The FOR loop is also modified to skip disable guards. If executes
up to n iterations as before. The index variable of the FOR loop
"wraps around" to I after scanning the nth guard.

The modified algorithm is referred to as the Fair Algortihm, and is
assumed in the discussion which follows.

Theorem 4 (Fairness). Let P, be blocked on an alternative
operation (i.e., P, is in the WAITING state) in which some proces P, is listed
in some enabled guard. Further, let us assume P, does not become
unblocked through a rendezvous with any process other than P,. Consider
an alternative construct A in P, that has been executed u times and con-
tains n guards, one of which (g,.) contains a compatible communication
with P,. If P, now executes A at least n more times and g,, is enabled on
each of these n invocations of A, then Pi and P will rendezvous before the
(u + n)th execution of A completes.

Proof. The theorem can be proven by contradiction. Suppose P, does
not rendezvous with P, before the (u + n)th execution of A. For this to hap-
pen, P, must continually be rendezvousing with some other process(es)
before it scans P, because the moment it scans P,, it. will see that P, is in
the WAITING state and rendezvous with Pi. However, the Fair Algorithm
guarantees that within n executions of A, g,, will become the first guard
that is scanned. When g,. is scanned first, no other process can rendezvous
with P, before P, scans P, so a rendezvous between P, and P, must take
place. I

The following corollary follows immediately from this theorem:

Corollary 1. In an infinitely repetitive execution of an alternative
construct, a guard cannot remain continually available for an unbounded
amount of time without eventually rendezvousing.

This shows that the Fair Algorithm is weakly fair. It demonstrates, for
instance, that a process waiting to be served by another process cannot be
continuously denied service for an unbounded amount of time. The Fair
Algorithm is n't strongly fair, however. Modification of this algorithm to
one which is strongly fair is an open question. None of the alternative
algorithms that have been developed thus far (based on message-passing
architectures) is strongly fair.

8. CONCLUSIONS

We have presented an algorithm that implements the generalized alter-
native construct in CSP. Unlike previous algorithms, it is based on a
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shared memory architecture. It has been shown that the algorithm main-
tains the safety and liveness properties required by any correct implemen-
tation. Extensions to the algorithm that allow processes to terminate and
guarantee weak fairness were also presented. An implementation, written in
C, has been developed for a 18-processor BBN Butterfly parallel processor.
Empirical performance evaluation of this implementation is in progress.
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